Code No: 52101/MT M.Tech. I-Semester Examinations,February-2007. MACHINE MODELLING AND ANALYSIS (Common to Power Electronics and Electric Drives, Power and Industrial Drives and Power Electronics) Time: 3 hours Max. Marks: 60

Answer any FIVE questions All questions carry equal marks

- 1.a) Write the voltage equations for Kron's primitive machine in matrix form. What observations are mode from the impedance matrix of this machine?
 - b) Draw the i) basic two pole machine diagram and ii) primitive machine diagrams for the following machines. D.C compound machine, poly phase Induction machine and synchronous machine with amortisseurs.
- 2.a) Derive the transformations for currents between a rotating balanced z-phase (α, β) winding and a pseudo-stationary twophase (d, q) winding. Assume equal turns on all coils. Show that the transpose of current transformulation matrix is equal to its inverse.
- b) For steady slato balanced operation with

$$i_{a} = I_{m} \cos (wt+\phi)$$

$$i_{b} = I_{m} \cos (wt+\phi - \frac{2\pi}{3})$$

$$i_{c} = I_{m} \cos (wt+\phi + \frac{2\pi}{3})$$

Determine the primitive coil current i_d and i_q and show that these are steady d.c. values.

3.a) The brush axis of a separately excited d.c. motor armature is displaced from q-axis by an angle of ∞° . Show that its electro magnetic torque T_e is given by the expression

 $T_e = [M_d I_f I_a \cos \alpha + \frac{1}{2} I_a^2 (2_d-L_q) \sin 2\alpha]$

b) A 220v, 5Kw, 1480 r.p.m. separately excited d.c. motor has the following data:

$$r_a = 1.2\Omega$$
 no load speed = 1500 r.p.m

 $J = 1.6 \text{ Kg.m}^2$ no load current = 3A

Assume constant field current and neglect armature inductance. Find the parameters of equivalent electrical circuit.

Code No: 52101/MT

- 4.a) Develop the complete mathematical model of d.c. shunt machine from its basic equations.
 - b) Derive the transfer function of the separately excited d.c. motor and show that

T.F,
$$\frac{W_r}{V_t} = \frac{K_m}{JL_a} \frac{1}{S^2 + \frac{1}{T_a}S + \frac{1}{T_aT_m}}$$
.

When Load torque is neglected.

5.a) Derive the equation $\frac{w_r(s)}{V_t(s)} = \frac{1}{Km} \cdot \frac{1}{1+T_m \cdot s}$

from the transfer function model of separately excited d.c. motor.

- b) Obtain an electrical circuit which is equivalent to a separately excited d.c. motor.
- 6.a) Draw the basic circuit model for a 3-phase Induction motor and obtain the voltage equations in the form of matrices in terms of stator and rotor currents.
 - b) Derive and obtain expressions for flux linkages in the two-axis model for a 3-phase induction motor from ϕ_a and ϕ_b and ϕ_c values.
- 7.a) Explain steady state analysis of a 3-phase Induction machine from its mathematical model and obtain its equivalent circuit from its steady state analysis.
 - b) Derive the steady state torque equation from its mathematical model and what are your observation on it.
- 8.a) Derive the circuit model of a 3-phase synchronous motor and mention few salient features from its model.
 - b) Derive torque equation for a 3-phase synchronous motor model and obtain steady state power angle characteristics based on its torque expression.
